The CBORG API server is an LLM proxy server that provides token-authenticated access to provided models. The proxy server is OpenAI-compatible, which means that in most cases it can be used as a drop-in replacement for any program that is built to work with OpenAI’s ChatGPT.
To use the API server, you must provide your personal API key and set the model base endpoint to https://api.cborg.lbl.gov
.
Local clients on the LBL Network (VPN, Employee Wifi or Ethernet) may also use https://api-local.cborg.lbl.gov
to bypass Cloudflare, which could block your application if it exceeds rate-limits.
To request a key, complete this form.
Example Code
import openai # CBORG API Proxy Server is OpenAI-compatible through the openai module
import os
client = openai.OpenAI(
api_key=os.environ.get('CBORG_API_KEY'), # Please do not store your API key in the code
base_url="https://api.cborg.lbl.gov" # Local clients can also use https://api-local.cborg.lbl.gov
)
models = [
"lbl/cborg-chat:latest", # LBL-hosted Llama 405B with custom system prompt
"lbl/cborg-coder:latest", # LBL-hosted Llama 405B with custom system prompt
"lbl/cborg-vision:latest", # LBL-hosted Llama 405B with custom system prompt
"lbl/llama", # LBL-hosted Llama 405B Chat model
"lbl/llama-vision", # LBL-hosted Llama 90B Vision model
"openai/gpt-4o",
"openai/gpt-4o-mini",
"openai/o1",
"openai/o1-mini",
"anthropic/claude-haiku",
"anthropic/claude-sonnet",
"anthropic/claude-opus",
"google/gemini-pro",
"google/gemini-flash",
"aws/llama-3.1-405b",
"aws/llama-3.1-70b",
"aws/llama-3.1-8b",
"aws/command-r-plus-v1",
"aws/command-r-v1"
]
for m in models:
try:
response = client.chat.completions.create(
model=m,
messages = [
{
"role": "user",
"content": "What letter comes after A?"
}
],
temperature=0.0 # Optional: set model temperature to control amount of variance in response
)
print(f"Model: {m}\nResponse: {response.choices[-1].message.content}")
except:
print(f"Error calling model {m}")
Now let’s run the demo from the command line:
$ python ./test.py
Model: lbl/cborg-chat:latest
Response: The letter that comes after A in the English alphabet is B.
...
Model: openai/gpt-4o
Response: The letter that comes after A is B.
Model: openai/gpt-4o-mini
Response: The letter that comes after A is B.
Model: anthropic/claude-haiku
Response: The letter that comes after A is B.
Model: anthropic/claude-sonnet
Response: The letter that comes after A in the English alphabet is B.
...
RAG Embedding Example
import os
import openai
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
openai.api_key = os.environ.get('CBORG_API_KEY')
openai.base_url = "https://api.cborg.lbl.gov"
model = "lbl/nomic-embed-text"
doc1 = "Apple"
doc2 = "Bread"
response = openai.embeddings.create(
model=model, # model to send to the proxy
input = [doc1, doc2] # documents to encode, **this must always be a list, even if only encoding 1 doc**
)
d1 = response.data[0].embedding
d2 = response.data[1].embedding
query = "Orange"
response = openai.embeddings.create(
model=model, # model to send to the proxy
input=query # query - this must be a string, **never send a list to generate a query vector**
)
q = response.data[0].embedding
query = np.array([q])
documents = np.array([d1,d2])
print('Similarity of query "Orange" to "Apple" versus "Bread" (higher is more similar):', cosine_similarity(query,documents))
Usage Limitations
Acceptable Use
Users are responsible for complying with the terms of use of each model.
Guidance Document for LBNL Employees
Cyber Security has published a document providing Guidance on using Generative AI Tools
LBNL Staff should familiarize themselves with the issues described above.
Rate Limiting
Note that in production applications, your program will need to use ratelimiting otherwise requests will be rejected by the proxy server if they arrive too fast.
For example, you may use the Python ratelimit
module to ensure your application does not exceed the maximum usage limits.
The proxy server will enforce reasonable limits for on the number of parallel requests, tokens per minute, requests per minute and budget consumption for commercial (non-free) models.
Useful Tips
Supported Models
LBL-Hosted Models (free to use)
lbl/cborg-chat:latest
: Mistral Large 2 - Chat, Coding Assistant, Tool Uselbl/mistral-large
: Same as above, direct name model route (may change)lbl/cborg-chat-nano:latest
: Microsoft Phi 3.5 - Summarizationlbl/phi
: Same as above, direct name model route (may change)lbl/nomic-embed-text
: 768-dimension Text Embedding Modellbl/e5-embed-v2
: 1024-dimension Text Embedding Model (CURRENTLY OFFLINE)lbl/nv-embed-v1
: 4096-dimension Text Embedding Model (CURRENTLY OFFLINE)
Commercial Cloud-Hosted Model Aliases
openai/chatgpt:latest
: Alias to ChatGPT 4o (latest version)anthropic/claude:latest
: Alias to Claude Sonnet 3.5 (latest version)google/gemini:latest
: Alias to Gemini 1.5 Pro (latest version)
Commercial Cloud-Hosted Models
openai/gpt-3.5-turbo
openai/gpt-4o
openai/gpt-4o-mini
anthropic/claude-sonnet
anthropic/claude-opus
anthropic/claude-haiku
google/gemini-pro
google/gemini-flash
Example Code Requirements
- Request an API Key
- Save API key as an environment variable on your system.
- Install the OpenAI SDK for Python:
pip install openai